Schools
School data in wombat
comes in two forms, position and performance. Conveniently, snapshots of school data is available via the Australian Bureau of Statistics. In addition to exact location information, we also have included in wombat the school catchment areas. As for additional data, the Australian Curriculum, Assessment and Reporting Authority (ACARA), releases reports highlighting the performance of schools across Australia. NAPLAN provides the measure through which governments, education authorities and schools can determine whether or not young Australians are meeting important educational outcomes. NAPLAN data will be added where available.
Let's explore some of this data.
In [2]:
Copied!
%load_ext autoreload
%autoreload 2
import wombat
import os
%load_ext autoreload
%autoreload 2
import wombat
import os
The autoreload extension is already loaded. To reload it, use: %reload_ext autoreload
In [14]:
Copied!
w = wombat.Wombat()
w.set_area_as_city("Sydney")
w = wombat.Wombat()
w.set_area_as_city("Sydney")
In [15]:
Copied!
w.Schools.load()
w.Schools.load()
In [6]:
Copied!
# school ACARA information
w.Schools.df_acara.head()
# school ACARA information
w.Schools.df_acara.head()
Out[6]:
Calendar Year | ACARA SML ID | Location AGE ID | School AGE ID | School Name | Suburb | State | Postcode | School Sector | School Type | ... | Non-Teaching Staff | Full Time Equivalent Non-Teaching Staff | Total Enrolments | Girls Enrolments | Boys Enrolments | Full Time Equivalent Enrolments | Indigenous Enrolments (%) | Language Background Other Than English - Yes (%) | Language Background Other Than English - No (%) | Language Background Other Than English - Not Stated (%) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
232 | 2021 | 40275 | 68510.0 | 28510.0 | Saint Mary MacKillop College Albury | Jindera | NSW | 2642 | Independent | Combined | ... | 11.0 | 6.0 | 195.0 | 104.0 | 91.0 | 195.0 | 0.0 | 1.0 | 99.0 | 0.0 |
233 | 2021 | 40276 | 45298.0 | 5298.0 | St Dominic Savio School | Rockdale | NSW | 2216 | Independent | Primary | ... | 2.0 | 1.2 | 37.0 | 20.0 | 17.0 | 37.0 | 0.0 | 59.0 | 41.0 | 0.0 |
234 | 2021 | 40277 | 66768.0 | 26768.0 | Saint Mary MacKillop Colleges Limited | Wagga Wagga | NSW | 2650 | Independent | Combined | ... | 3.0 | 3.0 | 157.0 | 81.0 | 76.0 | 157.0 | 0.0 | 55.0 | 45.0 | 0.0 |
272 | 2021 | 40366 | 41409.0 | 1409.0 | Kinma School | Terrey Hills | NSW | 2084 | Independent | Primary | ... | 3.0 | 2.8 | 92.0 | 40.0 | 52.0 | 92.0 | 0.0 | 23.0 | 77.0 | 0.0 |
273 | 2021 | 40367 | 41411.0 | 1411.0 | Knox Grammar School | Wahroonga | NSW | 2076 | Independent | Combined | ... | 246.0 | 193.7 | 3123.0 | 78.0 | 3045.0 | 3123.0 | 0.0 | 39.0 | 47.0 | 14.0 |
5 rows × 35 columns
In [7]:
Copied!
# school ALL info - mostly address related
w.Schools.df_schools.head()
# school ALL info - mostly address related
w.Schools.df_schools.head()
Out[7]:
Calendar Year | ACARA SML ID | Location AGE ID | School AGE ID | School Name | Suburb | State | Postcode | School Sector | School Type | ... | Statistical Area 3 | Statistical Area 3 Name | Statistical Area 4 | Statistical Area 4 Name | Local Government Area | Local Government Area Name | State Electoral Division | State Electoral Division Name | Commonwealth Electoral Division | Commonwealth Electoral Division Name | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
238 | 2021 | 40275 | 68510.0 | 28510.0 | Saint Mary MacKillop College Albury | JINDERA | NSW | 2642 | Independent | Combined | ... | 10901 | Albury | 109 | Murray | 13340 | Greater Hume Shire (A) | 10001 | Albury | 114 | Farrer |
239 | 2021 | 40276 | 45298.0 | 5298.0 | St Dominic Savio School | ROCKDALE | NSW | 2216 | Independent | Primary | ... | 11904 | Kogarah - Rockdale | 119 | Sydney - Inner South West | 10500 | Bayside (A) | 10072 | Rockdale | 102 | Barton |
240 | 2021 | 40277 | 66768.0 | 26768.0 | Saint Mary MacKillop Colleges Limited | WAGGA WAGGA | NSW | 2650 | Independent | Combined | ... | 11303 | Wagga Wagga | 113 | Riverina | 17750 | Wagga Wagga (C) | 10087 | Wagga Wagga | 139 | Riverina |
285 | 2021 | 40366 | 41409.0 | 1409.0 | Kinma School | TERREY HILLS | NSW | 2084 | Independent | Primary | ... | 12203 | Warringah | 122 | Sydney - Northern Beaches | 15990 | Northern Beaches (A) | 10067 | Pittwater | 126 | Mackellar |
286 | 2021 | 40367 | 41411.0 | 1411.0 | Knox Grammar School | WAHROONGA | NSW | 2076 | Independent | Combined | ... | 12103 | Ku-ring-gai | 121 | Sydney - North Sydney and Hornsby | 14500 | Ku-ring-gai (A) | 10041 | Ku-ring-gai | 106 | Bradfield |
5 rows × 30 columns
In [8]:
Copied!
# ALL combined school info and ACARA information
w.Schools.df_all
# ALL combined school info and ACARA information
w.Schools.df_all
Out[8]:
School Name | Suburb | State | Postcode | School Sector | School Type | Campus Type | Latitude | Longitude | School URL | ... | Non-Teaching Staff | Full Time Equivalent Non-Teaching Staff | Total Enrolments | Girls Enrolments | Boys Enrolments | Full Time Equivalent Enrolments | Indigenous Enrolments (%) | Language Background Other Than English - Yes (%) | Language Background Other Than English - No (%) | Language Background Other Than English - Not Stated (%) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ACARA SML ID | |||||||||||||||||||||
40000 | Corpus Christi Catholic School | BELLERIVE | TAS | 7018 | Catholic | Primary | School Single Entity | -42.871256 | 147.371473 | http://www.corpuschristi.tas.edu.au | ... | 19.0 | 12.6 | 408.0 | 173.0 | 235.0 | 407.6 | 2.0 | 7.0 | 93.0 | 0.0 |
40001 | Fahan School | SANDY BAY | TAS | 7005 | Independent | Combined | School Single Entity | -42.916158 | 147.352764 | http://www.fahan.tas.edu.au | ... | 29.0 | 20.4 | 388.0 | 388.0 | 0.0 | 388.0 | 2.0 | 13.0 | 87.0 | 0.0 |
40002 | Geneva Christian College | LATROBE | TAS | 7307 | Independent | Combined | School Single Entity | -41.226741 | 146.438726 | http://www.geneva.tas.edu.au | ... | 49.0 | 29.1 | 280.0 | 134.0 | 146.0 | 279.9 | 6.0 | 4.0 | 96.0 | 0.0 |
40003 | Holy Rosary Catholic School | CLAREMONT | TAS | 7011 | Catholic | Primary | School Single Entity | -42.789375 | 147.248306 | http://www.holyrosary.tas.edu.au | ... | 20.0 | 11.9 | 388.0 | 189.0 | 199.0 | 388.0 | 4.0 | 4.0 | 96.0 | 0.0 |
40004 | Immaculate Heart of Mary Catholic School | LENAH VALLEY | TAS | 7008 | Catholic | Primary | School Single Entity | -42.865543 | 147.290159 | http://www.ihms.tas.edu.au | ... | 15.0 | 8.7 | 200.0 | 107.0 | 93.0 | 200.0 | 9.0 | 16.0 | 84.0 | 0.0 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
53049 | Ming-De International School Toowoomba | WESTBROOK | QLD | 4350 | Independent | Primary | School Single Entity | -27.615976 | 151.831722 | NaN | ... | 4.0 | 4.0 | 20.0 | 15.0 | 5.0 | 19.6 | 0.0 | 100.0 | 0.0 | 0.0 |
53050 | The Village School Gold Coast | COOLANGATTA | QLD | 4225 | Independent | Primary | School Single Entity | -28.168590 | 153.539755 | http://www.thevillageschoolgoldcoast.com.au | ... | 1.0 | 1.0 | 13.0 | 8.0 | 5.0 | 13.0 | 0.0 | 8.0 | 92.0 | 0.0 |
53055 | Secondary College of Languages | PARRAMATTA | NSW | 2150 | Government | Secondary | School Single Entity | -33.813693 | 151.008176 | NaN | ... | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN |
53057 | Nawarddeken Academy Mamadawerre School | West Arnhem Land | NT | 886 | Independent | Combined | School Single Entity | -12.257454 | 133.523957 | NaN | ... | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN |
53058 | Nawarddeken Academy Manmoyi School | West Arnhem Land | NT | 886 | Independent | Combined | School Single Entity | -12.544185 | 134.113497 | NaN | ... | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN |
9679 rows × 31 columns
In [9]:
Copied!
w.Schools.df_all.groupby(['School Sector','School Type']).size() # Australia wide
w.Schools.df_all.groupby(['School Sector','School Type']).size() # Australia wide
Out[9]:
School Sector School Type Catholic Combined 130 Primary 1239 Secondary 333 Government Combined 776 Primary 4833 Secondary 1156 Special 1 Independent Combined 782 Primary 230 Secondary 199 dtype: int64
In [10]:
Copied!
w.Schools.df_all.columns
w.Schools.df_all.columns
Out[10]:
Index(['School Name', 'Suburb', 'State', 'Postcode', 'School Sector', 'School Type', 'Campus Type', 'Latitude', 'Longitude', 'School URL', 'Governing Body', 'Governing Body URL', 'Year Range', 'ICSEA', 'ICSEA Percentile', 'Bottom SEA Quarter (%)', 'Lower Middle SEA Quarter (%)', 'Upper Middle SEA Quarter (%)', 'Top SEA Quarter (%)', 'Teaching Staff', 'Full Time Equivalent Teaching Staff', 'Non-Teaching Staff', 'Full Time Equivalent Non-Teaching Staff', 'Total Enrolments', 'Girls Enrolments', 'Boys Enrolments', 'Full Time Equivalent Enrolments', 'Indigenous Enrolments (%)', 'Language Background Other Than English - Yes (%)', 'Language Background Other Than English - No (%)', 'Language Background Other Than English - Not Stated (%)'], dtype='object')
In [18]:
Copied!
w.Schools.df['Staff-to-Student Ratio'] = w.Schools.df['Teaching Staff']/w.Schools.df['Total Enrolments']
w.Schools.df['Staff-to-Student Ratio'] = w.Schools.df['Teaching Staff']/w.Schools.df['Total Enrolments']
In [31]:
Copied!
import numpy as np
import plotly.offline as pyo
pyo.init_notebook_mode()
import plotly.express as px
fig = px.scatter(w.Schools.df,
y='ICSEA Percentile' ,
x='Staff-to-Student Ratio',
facet_col='School Type',
color='Indigenous Enrolments (%)',
hover_data={'School Name':True,
'School Type':True,
'School Sector':True
})
fig.update_layout(height=400)
fig.update_coloraxes(colorbar={'orientation':'h', 'thickness':20, 'y': -0.5})
fig.show()
import numpy as np
import plotly.offline as pyo
pyo.init_notebook_mode()
import plotly.express as px
fig = px.scatter(w.Schools.df,
y='ICSEA Percentile' ,
x='Staff-to-Student Ratio',
facet_col='School Type',
color='Indigenous Enrolments (%)',
hover_data={'School Name':True,
'School Type':True,
'School Sector':True
})
fig.update_layout(height=400)
fig.update_coloraxes(colorbar={'orientation':'h', 'thickness':20, 'y': -0.5})
fig.show()
In [16]:
Copied!
w.show_schools(secondary_catchment=True,
primary_catchment=True)
w
w.show_schools(secondary_catchment=True,
primary_catchment=True)
w
Out[16]: